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An exact symbolic dynamics is introduced for a model of strong chaos on stochastic webs with arbitrary
quasisymmetry (no translational invariance, in general). The model describes the interaction of charged par-
ticles with an electrostatic wave packet in a magnetic field under arbitrary resonance or nonresonance condi-
tions. As a first application, the symbolic dynamics is used to identify random chaotic sets and to calculate
accurately their global diffusion rate as a function of the resonance parameter.

PACS number(s): 05.45.+b, 02.50.Ey

Symbolic dynamics, i.e., the representation of classical
orbits by infinite sequences of symbols, is a useful tool for
understanding basic properties of chaos in dynamical sys-
tems, and for the computation of several quantities charac-
terizing the chaotic motion [1]. A good symbolic dynamics,
with well-defined (and relatively simple) alphabet and gram-
mar, has been introduced and extensively used in several
interesting cases of dissipative systems [2]. In the case of
Hamiltonian systems, on the other hand, a satisfactory sym-
bolic dynamics is usually more difficult to define, mainly due
to the intricate mixture of chaotic and regular motions on all
scales of phase space.

Some progress has been made recently [3] by determining
an approximate generating partition for the standard map in a
strongly chaotic regime where the stability islands cover a
small area of phase space. Several rigorous results are known
for piecewise linear area-preserving maps [4—8]. A simple
but now classic example is the sawtooth map [5-12], which,
like the standard map, belongs to the class of Taylor-
Chirikov (TC) twist maps (kicked-rotor Hamiltonians). Thus,
while this map is uniformly hyperbolic (completely chaotic),
it features much of the unstable regular structure (ordered
periodic orbits, cantori, and resonances) generically found in
typical maps for large nonlinearity parameter [6—8]. As such,
it turned out to be a good model for studying some basic
aspects of Hamiltonian dynamics [5-8,11,12] as well as for
checking the validity of transport theories [8—10] in the
strong chaos limit. A symbolic dynamics for the sawtooth
map, which is both exact and nontrivial [13], has been
worked out in detail [6—8] and has been used in several
applications [6-9,11,12]. In particular, it was shown [12]
that this symbolic dynamics provides a simple but powerful
method for investigating the quasiregularity of chaos in gen-
eral TC maps for arbitrary values of the nonlinearity param-
eter.

In this paper, the exact symbolic dynamics of the saw-
tooth map will be considerably extended to a much richer
dynamical model, representing a class of Hamiltonian sys-
tems with properties qualitatively different from those of TC
maps: charged particles interacting with an electrostatic
wave packet in a uniform magnetic field B. It is assumed that
the wave packet propagates perpendicularly to B, a case of
major interest in plasma physics [14]. If one also assumes
that the wave packet has a very broad frequency spectrum,
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the time dependence can be approximated by a periodic &
function [15]. The general Hamiltonian for these systems is
then [15,16]

oo

H=?u?+v>)2+KV(x,—v) E 8(t—sT), (1)

s=—00

where o is the cyclotron frequency, (u,v) are conjugate
variables giving the kinetic momentum in a magnetic field,
K is a parameter, V(x) is the periodic potential for the wave
packet, x. is the conserved coordinate of the cyclotron-orbit
center, and 7 is the time period. The Poincaré map for (1) is
the “web map” [15]

ug1=lu;+Kg(v,)]cosa+uv,sina,
M: ] ()
ver1=—[u;+Kg(vg)]sina+uvcosa,

where (u;,v;) are the values of (u,v) at time s7—0,
K=K/w, g(v)=f(x.—v) [f(x)=—dV(x)/dx] is the force
function, and @ = wT. Numerical studies [15] of the map (2)
indicate that unbounded chaotic diffusion in the (u,v) phase
plane occurs for arbitrarily small values of K, provided the
initial kinetic energy is large enough. This is in contrast with
TC maps, where this diffusion generally takes place only for
K>K_#0, when the last bounding invariant curve disap-
pears. The existence of such curves for (1) cannot be estab-
lished on the basis of Kolmogorov-Arnol’d-Moser (KAM)
theory, since the harmonic-oscillator Hamiltonian H,
=w?(u*+v?)/2 is degenerate (linear in the action), unlike
the rotor Hamiltonian for TC maps. The unbounded diffusion
for (2) takes place on a ““stochastic web” [15—-19] (see Fig.
1), whose symmetry and structure are determined by the pa-
rameters «, x., and K. This makes the dynamics of (2)
much richer than that of TC maps. Rational values of
a/2m=m/n (m and n are coprime integers) correspond to
resonance conditions. For n=3,4,6, the web has crystalline
symmetry (triangular, square, hexagonal), see Fig. 1(a), and
the map M" is translationally invariant in phase space, like
TC maps. In general, however, the system is not translation-
ally invariant but only “quasisymmetric” [15] [see the
quasicrystalline case «/27=1/5 in Fig. 1(b)].

In our model the function f(—v) [giving g(v)=f(x,
—v) in (2)] will be chosen as a sawtooth, f(—v)=v for
—0.5=<v<0.5 and f(v+1)=f(v) [20]. This gives, for al-
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FIG. 1. Chaotic orbits forming transient stochastic webs for the
model defined in the text: (a) a=2m/4 (crystalline square), (b)
a=21/5 (quasicrystalline pentagonal). In both cases x,=0 and
Lyapunov multiplier A =3.8. These orbits have been generated by
the symbolic dynamics introduced in the text (no roundoff errors),
using in both cases a sequence ¢ of length 20 000 (from random-
number generator) and containing only two symbols, ¢,=—1,0.
Such a sequence is always admissible for A =3.8 [see (12)].

most all values of K, a uniformly hyperbolic map (2) (see
below). However, it usually takes a very long time for a
chaotic orbit to fill ergodically a given region of phase space.
During this time the motion exhibits the typical structure of
stochastic webs (see Fig. 1) found for smooth g(v) [15-19].
Thus, as in the case of the TC sawtooth map, our model
should give a good description of typical maps (2) in the
strong chaos limit. We show that this model has an exact [13]
symbolic dynamics for general quasisymmetry (arbitrary
«). As far as we are aware, this seems to be the first example
of a symbolic dynamics describing a nontranslationally in-
variant system in an infinite phase space. As a first applica-
tion, we identify random chaotic sets for the system and
calculate accurately (without roundoff errors) their global
diffusion rate as a function of a.

Our starting point is the ‘“Newton” equation, which is
easily derived from (2):

Us+1—77vs+vs~l=6g(vs)s (3)

where 7=2 cosa and €= —K sina. The variable v can be
expressed in a unique way as v=a+w+x_., where a is an
integer and —0.5=<w<C0.5. In the sawtooth case, g(v)=w,
and Eq. (3) can then be written as follows:

Ws+l—(77+6)ws+ws~1:_[bs+(2_n)xc]a (4)
where
bs':as+1_77as+a5‘1' (5)

It is easily verified that 7+e= Tr(DM)=\+\""!, where
N*! are the eigenvalues of the linearized map DM. For
|7+€/>2, N\ is real and we can assume that |\|>1
(o=InJ\| is the Lyapunov exponent). In this uniformly hy-
perbolic case, Eq. (4) can be inverted by Green function
methods (in analogy to the TC sawtooth map [6]) to express
wy in terms of the sequence {b}:

1 - .
W= 2 A b+ 2-mxd. ()

s'=—w
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Given the integer sequence a={a}, the sequence b={b}
can be calculated from Eq. (5), and wy is then fixed by Eq.
(6). The orbit vy,=a,+w +x, is thus uniquely determined
from the sequence a, and vice versa, of course. One can
associate with some orbit point, say v,, a sequence
a={a,}, where ay is the value of a for the s'th iterate of
vy . The orbit point v will then obviously correspond to the
“shifted” sequence a(s)={ags,):as:+s}. Thus, the encoding
of orbits by sequences a provides a symbolic dynamics. The
generating  partition consists of the infinite strips
—0.5sv—x.—a<0.5, for all integers a. A sequence a is
admissible only if the corresponding sequence b in (6) satis-
fies the “pruning” rule

—0.5<=w,<0.5 (7)

for all s. As it stands, however, a, is not a useful code since
it is generally unbounded, and the alphabet is then not finite.
A remedy for this problem will now be proposed.

Using (7) in (4), we find that b, is bounded,
|be+(2— n)x.|<1+]| 75+ €|/2. Now, b, can be expressed in
a unique way as

b,=c,+r,, (8)

where ¢;=[b] is the integer part of b, and r;=b, mod 1 is
the “remainder.” After substituting (8) in (5), we obtain

as+l:cs“[*77as]_asfla (9)
r¢=(—ma,) mod 1. (10)

Using Egs. (8) and (10) in |by+(2— np)x |<1+]|7n+€|/2,
we get the inequality

—1—|n+el2—B<cy+(2—x.<1+|n+el/2. (11)

Here B=sup{r,}=0 in the crystalline cases (7=0,%1),
B=1 for irrational 7, and B=(g—1)/q for rational
n=1I/q (I and g are coprime integers). Relations (9)—(11)
are our main results. Given an arbitrary “initial pair”
(a_y,aq) [fixed by the initial conditions (uq,v)], the Dio-
phantine equation (9) allows one to determine the basic se-
quence a from the sequence ¢ of bounded integers ¢, in the
interval (11). Thus, the use of the sequence c¢ effectively
reduces the infinite alphabet of a, to a finite one. For ex-
ample, for A =3.5, x.=0, and irrational » (8=1), the effec-
tive alphabet consists of six symbols, ¢,=—3,...,2. We
denote by 3., the space of admissible sequences c¢ [satisfying
(7)] for a given initial pair (a _1,a,). In the crystalline cases,
the map M" (n=3,4,6) is translationally invariant and its
dynamics can be reduced to a torus (the unit cell). Then,
clearly, . does not depend on (a_q,a,), and c;=b, be-
comes a natural code for describing the toroidal dynamics
using a finite generating partition, as in the case of TC maps
[6]. In the absence of translational invariance, however, 3.
generally depends on (a_,ag), and ¢, should be considered
only as an “auxiliary code” to the main code a,. Despite
this, one should notice that spaces 3, associated with differ-
ent pairs (a_,aq) will generally correspond to orbit spaces
having large intersections, since almost all pairs (a,a’) will
eventually be “reached” by most of the orbits (i.e., a;,=a
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and a,,;=a’ for some s); due to ergodicity. Moreover,
some subspaces of 2, do not depend on (a _1,a), as shown
below.

An interesting case is that of rational 7=1[/q. For suffi-
ciently strong chaos (|\|>1), one can always find admis-
sible sequences ¢ and ¢ related by c,=qc,+qr,+2j
+[— #nj], where 7 are the remainders corresponding to ¢,
(qr are integers), and j is some integer in [0,q). Using Eq.
(9), it is then easy to show that there exist sequences a
and a, corresponding to ¢ and ¢, which are related by a;
=qa,+j. This “self-similarity” implies that the orbit asso-
ciated with a visits only a very regular subset of the gener-
ating partition, i.e., a periodic array of strips separated from
each other by a constant distance q.

For periodic orbits (POs) with minimal period p
(vs+p=Vy), the sequences a and b are also periodic with
minimal period p. However, in the absence of translational
invariance (% not integer), the minimal period of ¢ is gener-
ally only a divisor of p. This is because the periodicity of
b implies that of ¢, but the contrary is generally not true if
77 is not integer, as one can see from Egs. (8)—(10). Thus, in
general, all the POs with period p and initial pair (a_,a)
can be systematically found as follows: (a) For each se-
quence ¢ with alphabet in (11) and minimal period p’ divid-
ing p, check whether (a,_q,a,)=(a_q,ay), where a; is
determined from Eq. (9). (b) If (a,_1,a,)=(a_,ag), check
whether ¢ is admissible, i.e., it satisfies (7). This checking is
relatively simple to perform for POs, since the infinite sum in
(6) reduces to a finite one (of length p). In the crystalline
cases, the POs of M" (n=3,4,6) can be defined in the tor-
oidal phase space. When ‘lifted” to the full phase space,
these POs satisfy, in general, the relation v, ,=v +e;,
s=0,...,p—1, where p is a multiple of n and e, are inte-
gers [21]. The POs with e,#0 are ‘“accelerator modes.”
These crystalline cases, both in the toroidal and the full
phase space frameworks, can be studied using the natural
code b;=c, [22], as in the case of TC maps [6,7].

It is easy to show that sequences having the property that
|bs+(2— n)x.|<|n+e€l/2—1 satisty (7) and are therefore
admissible. It follows then from (8) and (10) that all the
sequences ¢ with ¢, chosen arbitrarily in the interval

1—|p+el2<c,+2—np)x.<|np+el2-1-8 (12

are admissible and form a proper subspace 2 . of 3. for all
(a_y,ap). The set of orbits corresponding to 3 . is a full
horseshoe with zero measure and finite fractal dimensionality
[22]. Such “random” chaotic sets usually exhibit a rigor-
ously diffusive behavior [11]. We define the diffusion coef-
ficient as

<(u5—u0)2+(vs—00)2>{
2s ’

D= a?lim

5-—00

(13)

s

where ( ), denotes average over an ensemble & of initial
conditions (u#g,vq). Clearly, D is proportional to the average
growth rate of the kinetic energy in (1). It is interesting to
study the dependence of D on «, which is proportional to the
magnetic field B. The function D(a) will be calculated,
naturally, at fixed chaos strength, i.e., at fixed \. In order that
D(«) will characterize a genuine diffusive behavior, the en-
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FIG. 2. D(«) for 4m/a=6,...,24 and x.=0. The solid lines
are results obtained from the symbolic dynamics using chaotic sets
corresponding to 60 000 random sequences ¢ of length 6000 with
cs=—1,0 (lower line) and ¢;= —2,—1,0,1 (upper line). These se-
quences are admissible for A=3.73 and A\ =5.83, respectively [see
(12)]. The dashed lines are results obtained using a 200X 200 uni-
formly distributed ensemble and 600 iterations of the map (2) for
N =3.73 (lower line) and A =5.83 (upper line).

semble # will be chosen as the random chaotic set A corre-
sponding to the space S . of sequences satisfying (12) with
B=1. This space is simply the intersection of the spaces
3. for all a. The topological entropy of A is h=InN,
where N is the number of values assumed by c in (12) for
B=1. In the crystalline cases, we find the exact result [22]:
D=a?((N*>—1), where £€=1/24 for n=4 and £=1/18 for
n=3,6. In all other cases, D is calculated accurately (without
roundoff errors, to “stay” in A) by producing first a large
ensemble of long sequences ¢ in ER,C using a random-
number generator. The corresponding values of (ug,vy) in
(13) are then calculated from Egs. (9), (10), and (6), with
a_i1=ay=0. The estimated error in this calculation is not
larger than 1%. The results for two sets A are presented in
Fig. 2, together with standard results obtained by direct it-
eration of the map (2) using a “realistic’” uniformly distrib-
uted ensemble #. While the latter results contain, of course,
large roundoff errors, they may be reliable due to the shad-
owing effect in a uniformly hyperbolic system. The discrep-
ancy between these results and the corresponding ones for
&=A should reflect the effect of all the admissible se-
quences which are not included in the random chaotic sets.
We see that this discrepancy and D(«) increase without limit
as « approaches the value of 7, for which (1) is integrable
and exhibits ballistic motion. On the other hand, as «a ap-
proaches 0, these quantities decrease and tend rapidly to
well-defined limits. The limit values are precisely those cor-
responding to the TC sawtooth map, since the «— 0 limit of
the web map is a TC map [15]. In any case, as |\| is in-
creased, the accurate results for D(a) obtained using the
random ensembles &= A should approach those obtained us-
ing more “realistic”’ (uniform) ensembles. The latter en-
sembles may be approximated by sets of periodic orbits of
sufficiently long period [9,11], and the corresponding values
of D(«) can be calculated using the symbolic dynamics, as
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in the case of the TC sawtooth map [9]. The results of these
calculations will be presented elsewhere [22].

In conclusion, we have introduced an exact symbolic dy-
namics for a model of strong chaos on stochastic webs with
arbitrary quasisymmetry. This symbolic dynamics turns out
to have unique features, necessary for describing an extended
Hamiltonian system without translational invariance in phase
space. We have shown how the infinite alphabet for the basic
code can be effectively reduced to a finite one. The symbolic
dynamics becomes then useful to study unexplored aspects
of the rich dynamical problem of charged particles interact-
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ing with an electrostatic wave packet in a magnetic field. In
this work, the global diffusion rate of random chaotic sets
was calculated accurately as a function of the resonance pa-
rameter, and other aspects of the problem will be studied
elsewhere [22].
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